Strain and Magnetic Field Induced Spin-Structure Transitions in Multiferroic BiFeO3
نویسندگان
چکیده
منابع مشابه
magnetic dispersion and anisotropy in multiferroic BiFeO3.
We have determined the full magnetic dispersion relations of multiferroic BiFeO3. In particular, two excitation gaps originating from magnetic anisotropies have been clearly observed. The direct observation of the gaps enables us to accurately determine the Dzyaloshinskii-Moriya (DM) interaction and the single ion anisotropy. The DM interaction supports a sizable magnetoelectric coupling in thi...
متن کاملTerahertz spectroscopy of spin waves in multiferroic BiFeO3 in high magnetic fields.
We have studied the magnetic field dependence of far-infrared active magnetic modes in a single ferroelectric domain BiFeO3 crystal at low temperature. The modes soften close to the critical field of 18.8 T along the [001] (pseudocubic) axis, where the cycloidal structure changes to the homogeneous canted antiferromagnetic state and a new strong mode with linear field dependence appears that pe...
متن کاملStabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO3.
Multiferroic BiFeO3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. However, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combinati...
متن کاملTheory of spin-orbit enhanced electric-field control of magnetism in multiferroic BiFeO3.
We present a microscopic theory that shows the importance of spin-orbit coupling in perovskite compounds with heavy ions. In BiFeO3 (BFO) the spin-orbit coupling at the bismuth ion sites results in a special kind of magnetic anisotropy that is linear in the applied E field. This interaction can convert the cycloid ground state into a homogeneous antiferromagnet, with a weak ferromagnetic moment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Materials
سال: 2016
ISSN: 0935-9648
DOI: 10.1002/adma.201602327